Copied to
clipboard

G = C425D6order 192 = 26·3

3rd semidirect product of C42 and D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C425D6, D4.8D12, D12.33D4, M4(2)⋊4D6, Q8.13D12, Dic6.33D4, C4≀C22S3, (C3×D4).3D4, C12.4(C2×D4), (C3×Q8).3D4, C4○D4.18D6, D4○D12.1C2, C4.10(C2×D12), C8.D68C2, C4.126(S3×D4), C424S38C2, (C4×C12)⋊12C22, C6.28C22≀C2, Q8.14D61C2, C32(D4.9D4), (C22×S3).3D4, C22.30(S3×D4), C427S310C2, C12.46D42C2, C4.Dic35C22, C2.31(D6⋊D4), (C2×C12).265C23, (C2×Dic6)⋊14C22, C4○D12.14C22, (C2×D12).70C22, (C3×M4(2))⋊11C22, (C3×C4≀C2)⋊2C2, (C2×C6).27(C2×D4), (C3×C4○D4).6C22, (C2×C4).110(C22×S3), SmallGroup(192,384)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C425D6
C1C3C6C12C2×C12C4○D12D4○D12 — C425D6
C3C6C2×C12 — C425D6
C1C2C2×C4C4≀C2

Generators and relations for C425D6
 G = < a,b,c,d | a4=b4=c6=d2=1, cac-1=ab=ba, dad=a-1b2, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 544 in 152 conjugacy classes, 39 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, Dic3, C12, C12, D6, C2×C6, C2×C6, C42, C22⋊C4, M4(2), M4(2), SD16, Q16, C2×D4, C2×Q8, C4○D4, C4○D4, C3⋊C8, C24, Dic6, Dic6, C4×S3, D12, D12, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C22×S3, C22×S3, C4.D4, C4≀C2, C4≀C2, C4.4D4, C8.C22, 2+ 1+4, C24⋊C2, Dic12, C4.Dic3, D6⋊C4, D4.S3, C3⋊Q16, C4×C12, C3×M4(2), C2×Dic6, C2×D12, C2×D12, C4○D12, C4○D12, S3×D4, Q83S3, C3×C4○D4, D4.9D4, C424S3, C12.46D4, C3×C4≀C2, C427S3, C8.D6, Q8.14D6, D4○D12, C425D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, D12, C22×S3, C22≀C2, C2×D12, S3×D4, D4.9D4, D6⋊D4, C425D6

Character table of C425D6

 class 12A2B2C2D2E2F34A4B4C4D4E4F4G6A6B6C8A8B12A12B12C12D12E12F12G12H24A24B
 size 112412121222244412242488242244444888
ρ1111111111111111111111111111111    trivial
ρ2111-11-11111-1-1-1-1-111-11111-1-11-1-1-111    linear of order 2
ρ31111-1-1-1111-11-1-11111-1111-1-11-1-11-1-1    linear of order 2
ρ4111-1-11-11111-111-111-1-111111111-1-1-1    linear of order 2
ρ51111111111-11-11-1111-1-111-1-11-1-11-1-1    linear of order 2
ρ6111-11-111111-11-1111-1-1-11111111-1-1-1    linear of order 2
ρ71111-1-1-1111111-1-11111-11111111111    linear of order 2
ρ8111-1-11-1111-1-1-11111-11-111-1-11-1-1-111    linear of order 2
ρ92222000-12222200-1-1-120-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ1022-2200022-20-20002-2200-2-200200-200    orthogonal lifted from D4
ρ1122-2-200022-2020002-2-200-2-200200200    orthogonal lifted from D4
ρ12222-2000-122-2-2-200-1-1120-1-111-1111-1-1    orthogonal lifted from D6
ρ1322-200-202-22000202-20002200-200000    orthogonal lifted from D4
ρ1422-200202-22000-202-20002200-200000    orthogonal lifted from D4
ρ152222000-122-22-200-1-1-1-20-1-111-111-111    orthogonal lifted from D6
ρ16222-2000-1222-2200-1-11-20-1-1-1-1-1-1-1111    orthogonal lifted from D6
ρ17222020-22-2-20000022000-2-200-200000    orthogonal lifted from D4
ρ182220-2022-2-20000022000-2-200-200000    orthogonal lifted from D4
ρ1922-22000-12-20-2000-11-100113-3-13-31-33    orthogonal lifted from D12
ρ2022-2-2000-12-202000-11100113-3-13-3-13-3    orthogonal lifted from D12
ρ2122-22000-12-20-2000-11-10011-33-1-3313-3    orthogonal lifted from D12
ρ2222-2-2000-12-202000-1110011-33-1-33-1-33    orthogonal lifted from D12
ρ234440000-2-4-400000-2-20002200200000    orthogonal lifted from S3×D4
ρ2444-40000-2-4400000-22000-2-200200000    orthogonal lifted from S3×D4
ρ254-4000004002i0-2i00-4000000-2i2i02i-2i000    complex lifted from D4.9D4
ρ264-400000400-2i02i00-40000002i-2i0-2i2i000    complex lifted from D4.9D4
ρ274-400000-200-2i02i0020000-2323ζ43+2ζ32+1ζ4+2ζ32+10ζ4+2ζ3+1ζ43+2ζ3+1000    complex faithful
ρ284-400000-200-2i02i002000023-23ζ43+2ζ3+1ζ4+2ζ3+10ζ4+2ζ32+1ζ43+2ζ32+1000    complex faithful
ρ294-400000-2002i0-2i0020000-2323ζ4+2ζ3+1ζ43+2ζ3+10ζ43+2ζ32+1ζ4+2ζ32+1000    complex faithful
ρ304-400000-2002i0-2i002000023-23ζ4+2ζ32+1ζ43+2ζ32+10ζ43+2ζ3+1ζ4+2ζ3+1000    complex faithful

Smallest permutation representation of C425D6
On 48 points
Generators in S48
(1 34 26 43)(2 32 30 47)(3 36 28 45)(4 41 25 22)(5 39 29 20)(6 37 27 24)(7 19 18 33)(8 23 16 31)(9 21 14 35)(10 46 13 42)(11 44 17 40)(12 48 15 38)
(1 16 5 13)(2 14 6 17)(3 18 4 15)(7 25 12 28)(8 29 10 26)(9 27 11 30)(19 22 48 45)(20 46 43 23)(21 24 44 47)(31 39 42 34)(32 35 37 40)(33 41 38 36)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 5)(2 4)(3 6)(7 9)(11 12)(14 18)(15 17)(19 40)(20 39)(21 38)(22 37)(23 42)(24 41)(25 30)(26 29)(27 28)(31 46)(32 45)(33 44)(34 43)(35 48)(36 47)

G:=sub<Sym(48)| (1,34,26,43)(2,32,30,47)(3,36,28,45)(4,41,25,22)(5,39,29,20)(6,37,27,24)(7,19,18,33)(8,23,16,31)(9,21,14,35)(10,46,13,42)(11,44,17,40)(12,48,15,38), (1,16,5,13)(2,14,6,17)(3,18,4,15)(7,25,12,28)(8,29,10,26)(9,27,11,30)(19,22,48,45)(20,46,43,23)(21,24,44,47)(31,39,42,34)(32,35,37,40)(33,41,38,36), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,5)(2,4)(3,6)(7,9)(11,12)(14,18)(15,17)(19,40)(20,39)(21,38)(22,37)(23,42)(24,41)(25,30)(26,29)(27,28)(31,46)(32,45)(33,44)(34,43)(35,48)(36,47)>;

G:=Group( (1,34,26,43)(2,32,30,47)(3,36,28,45)(4,41,25,22)(5,39,29,20)(6,37,27,24)(7,19,18,33)(8,23,16,31)(9,21,14,35)(10,46,13,42)(11,44,17,40)(12,48,15,38), (1,16,5,13)(2,14,6,17)(3,18,4,15)(7,25,12,28)(8,29,10,26)(9,27,11,30)(19,22,48,45)(20,46,43,23)(21,24,44,47)(31,39,42,34)(32,35,37,40)(33,41,38,36), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,5)(2,4)(3,6)(7,9)(11,12)(14,18)(15,17)(19,40)(20,39)(21,38)(22,37)(23,42)(24,41)(25,30)(26,29)(27,28)(31,46)(32,45)(33,44)(34,43)(35,48)(36,47) );

G=PermutationGroup([[(1,34,26,43),(2,32,30,47),(3,36,28,45),(4,41,25,22),(5,39,29,20),(6,37,27,24),(7,19,18,33),(8,23,16,31),(9,21,14,35),(10,46,13,42),(11,44,17,40),(12,48,15,38)], [(1,16,5,13),(2,14,6,17),(3,18,4,15),(7,25,12,28),(8,29,10,26),(9,27,11,30),(19,22,48,45),(20,46,43,23),(21,24,44,47),(31,39,42,34),(32,35,37,40),(33,41,38,36)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,5),(2,4),(3,6),(7,9),(11,12),(14,18),(15,17),(19,40),(20,39),(21,38),(22,37),(23,42),(24,41),(25,30),(26,29),(27,28),(31,46),(32,45),(33,44),(34,43),(35,48),(36,47)]])

Matrix representation of C425D6 in GL4(𝔽73) generated by

57136543
60703035
166000
13300
,
720720
072072
2010
0201
,
072072
172172
0001
00721
,
720720
721721
0010
00172
G:=sub<GL(4,GF(73))| [57,60,16,13,13,70,60,3,65,30,0,0,43,35,0,0],[72,0,2,0,0,72,0,2,72,0,1,0,0,72,0,1],[0,1,0,0,72,72,0,0,0,1,0,72,72,72,1,1],[72,72,0,0,0,1,0,0,72,72,1,1,0,1,0,72] >;

C425D6 in GAP, Magma, Sage, TeX

C_4^2\rtimes_5D_6
% in TeX

G:=Group("C4^2:5D6");
// GroupNames label

G:=SmallGroup(192,384);
// by ID

G=gap.SmallGroup(192,384);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,254,219,58,1123,136,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^6=d^2=1,c*a*c^-1=a*b=b*a,d*a*d=a^-1*b^2,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

Export

Character table of C425D6 in TeX

׿
×
𝔽