metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42⋊5D6, D4.8D12, D12.33D4, M4(2)⋊4D6, Q8.13D12, Dic6.33D4, C4≀C2⋊2S3, (C3×D4).3D4, C12.4(C2×D4), (C3×Q8).3D4, C4○D4.18D6, D4○D12.1C2, C4.10(C2×D12), C8.D6⋊8C2, C4.126(S3×D4), C42⋊4S3⋊8C2, (C4×C12)⋊12C22, C6.28C22≀C2, Q8.14D6⋊1C2, C3⋊2(D4.9D4), (C22×S3).3D4, C22.30(S3×D4), C42⋊7S3⋊10C2, C12.46D4⋊2C2, C4.Dic3⋊5C22, C2.31(D6⋊D4), (C2×C12).265C23, (C2×Dic6)⋊14C22, C4○D12.14C22, (C2×D12).70C22, (C3×M4(2))⋊11C22, (C3×C4≀C2)⋊2C2, (C2×C6).27(C2×D4), (C3×C4○D4).6C22, (C2×C4).110(C22×S3), SmallGroup(192,384)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C42⋊5D6
G = < a,b,c,d | a4=b4=c6=d2=1, cac-1=ab=ba, dad=a-1b2, cbc-1=dbd=b-1, dcd=c-1 >
Subgroups: 544 in 152 conjugacy classes, 39 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, Dic3, C12, C12, D6, C2×C6, C2×C6, C42, C22⋊C4, M4(2), M4(2), SD16, Q16, C2×D4, C2×Q8, C4○D4, C4○D4, C3⋊C8, C24, Dic6, Dic6, C4×S3, D12, D12, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C22×S3, C22×S3, C4.D4, C4≀C2, C4≀C2, C4.4D4, C8.C22, 2+ 1+4, C24⋊C2, Dic12, C4.Dic3, D6⋊C4, D4.S3, C3⋊Q16, C4×C12, C3×M4(2), C2×Dic6, C2×D12, C2×D12, C4○D12, C4○D12, S3×D4, Q8⋊3S3, C3×C4○D4, D4.9D4, C42⋊4S3, C12.46D4, C3×C4≀C2, C42⋊7S3, C8.D6, Q8.14D6, D4○D12, C42⋊5D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, D12, C22×S3, C22≀C2, C2×D12, S3×D4, D4.9D4, D6⋊D4, C42⋊5D6
Character table of C42⋊5D6
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 6A | 6B | 6C | 8A | 8B | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 24A | 24B | |
size | 1 | 1 | 2 | 4 | 12 | 12 | 12 | 2 | 2 | 2 | 4 | 4 | 4 | 12 | 24 | 2 | 4 | 8 | 8 | 24 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | -2 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | -1 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | -1 | -1 | 1 | 2 | 0 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | -2 | 0 | 0 | -2 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 2 | 0 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | -2 | 0 | 0 | 2 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | -1 | -1 | -2 | 0 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ16 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | -1 | 2 | 2 | 2 | -2 | 2 | 0 | 0 | -1 | -1 | 1 | -2 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ17 | 2 | 2 | 2 | 0 | 2 | 0 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 0 | -2 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | -1 | 2 | -2 | 0 | -2 | 0 | 0 | 0 | -1 | 1 | -1 | 0 | 0 | 1 | 1 | √3 | -√3 | -1 | √3 | -√3 | 1 | -√3 | √3 | orthogonal lifted from D12 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -1 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | -1 | 1 | 1 | 0 | 0 | 1 | 1 | √3 | -√3 | -1 | √3 | -√3 | -1 | √3 | -√3 | orthogonal lifted from D12 |
ρ21 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | -1 | 2 | -2 | 0 | -2 | 0 | 0 | 0 | -1 | 1 | -1 | 0 | 0 | 1 | 1 | -√3 | √3 | -1 | -√3 | √3 | 1 | √3 | -√3 | orthogonal lifted from D12 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -1 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | -1 | 1 | 1 | 0 | 0 | 1 | 1 | -√3 | √3 | -1 | -√3 | √3 | -1 | -√3 | √3 | orthogonal lifted from D12 |
ρ23 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | -2 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ24 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 2i | -2i | 0 | 0 | 0 | complex lifted from D4.9D4 |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | -2i | 2i | 0 | 0 | 0 | complex lifted from D4.9D4 |
ρ27 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2√3 | 2√3 | ζ43+2ζ32+1 | ζ4+2ζ32+1 | 0 | ζ4+2ζ3+1 | ζ43+2ζ3+1 | 0 | 0 | 0 | complex faithful |
ρ28 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2√3 | -2√3 | ζ43+2ζ3+1 | ζ4+2ζ3+1 | 0 | ζ4+2ζ32+1 | ζ43+2ζ32+1 | 0 | 0 | 0 | complex faithful |
ρ29 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2√3 | 2√3 | ζ4+2ζ3+1 | ζ43+2ζ3+1 | 0 | ζ43+2ζ32+1 | ζ4+2ζ32+1 | 0 | 0 | 0 | complex faithful |
ρ30 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2√3 | -2√3 | ζ4+2ζ32+1 | ζ43+2ζ32+1 | 0 | ζ43+2ζ3+1 | ζ4+2ζ3+1 | 0 | 0 | 0 | complex faithful |
(1 34 26 43)(2 32 30 47)(3 36 28 45)(4 41 25 22)(5 39 29 20)(6 37 27 24)(7 19 18 33)(8 23 16 31)(9 21 14 35)(10 46 13 42)(11 44 17 40)(12 48 15 38)
(1 16 5 13)(2 14 6 17)(3 18 4 15)(7 25 12 28)(8 29 10 26)(9 27 11 30)(19 22 48 45)(20 46 43 23)(21 24 44 47)(31 39 42 34)(32 35 37 40)(33 41 38 36)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 5)(2 4)(3 6)(7 9)(11 12)(14 18)(15 17)(19 40)(20 39)(21 38)(22 37)(23 42)(24 41)(25 30)(26 29)(27 28)(31 46)(32 45)(33 44)(34 43)(35 48)(36 47)
G:=sub<Sym(48)| (1,34,26,43)(2,32,30,47)(3,36,28,45)(4,41,25,22)(5,39,29,20)(6,37,27,24)(7,19,18,33)(8,23,16,31)(9,21,14,35)(10,46,13,42)(11,44,17,40)(12,48,15,38), (1,16,5,13)(2,14,6,17)(3,18,4,15)(7,25,12,28)(8,29,10,26)(9,27,11,30)(19,22,48,45)(20,46,43,23)(21,24,44,47)(31,39,42,34)(32,35,37,40)(33,41,38,36), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,5)(2,4)(3,6)(7,9)(11,12)(14,18)(15,17)(19,40)(20,39)(21,38)(22,37)(23,42)(24,41)(25,30)(26,29)(27,28)(31,46)(32,45)(33,44)(34,43)(35,48)(36,47)>;
G:=Group( (1,34,26,43)(2,32,30,47)(3,36,28,45)(4,41,25,22)(5,39,29,20)(6,37,27,24)(7,19,18,33)(8,23,16,31)(9,21,14,35)(10,46,13,42)(11,44,17,40)(12,48,15,38), (1,16,5,13)(2,14,6,17)(3,18,4,15)(7,25,12,28)(8,29,10,26)(9,27,11,30)(19,22,48,45)(20,46,43,23)(21,24,44,47)(31,39,42,34)(32,35,37,40)(33,41,38,36), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,5)(2,4)(3,6)(7,9)(11,12)(14,18)(15,17)(19,40)(20,39)(21,38)(22,37)(23,42)(24,41)(25,30)(26,29)(27,28)(31,46)(32,45)(33,44)(34,43)(35,48)(36,47) );
G=PermutationGroup([[(1,34,26,43),(2,32,30,47),(3,36,28,45),(4,41,25,22),(5,39,29,20),(6,37,27,24),(7,19,18,33),(8,23,16,31),(9,21,14,35),(10,46,13,42),(11,44,17,40),(12,48,15,38)], [(1,16,5,13),(2,14,6,17),(3,18,4,15),(7,25,12,28),(8,29,10,26),(9,27,11,30),(19,22,48,45),(20,46,43,23),(21,24,44,47),(31,39,42,34),(32,35,37,40),(33,41,38,36)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,5),(2,4),(3,6),(7,9),(11,12),(14,18),(15,17),(19,40),(20,39),(21,38),(22,37),(23,42),(24,41),(25,30),(26,29),(27,28),(31,46),(32,45),(33,44),(34,43),(35,48),(36,47)]])
Matrix representation of C42⋊5D6 ►in GL4(𝔽73) generated by
57 | 13 | 65 | 43 |
60 | 70 | 30 | 35 |
16 | 60 | 0 | 0 |
13 | 3 | 0 | 0 |
72 | 0 | 72 | 0 |
0 | 72 | 0 | 72 |
2 | 0 | 1 | 0 |
0 | 2 | 0 | 1 |
0 | 72 | 0 | 72 |
1 | 72 | 1 | 72 |
0 | 0 | 0 | 1 |
0 | 0 | 72 | 1 |
72 | 0 | 72 | 0 |
72 | 1 | 72 | 1 |
0 | 0 | 1 | 0 |
0 | 0 | 1 | 72 |
G:=sub<GL(4,GF(73))| [57,60,16,13,13,70,60,3,65,30,0,0,43,35,0,0],[72,0,2,0,0,72,0,2,72,0,1,0,0,72,0,1],[0,1,0,0,72,72,0,0,0,1,0,72,72,72,1,1],[72,72,0,0,0,1,0,0,72,72,1,1,0,1,0,72] >;
C42⋊5D6 in GAP, Magma, Sage, TeX
C_4^2\rtimes_5D_6
% in TeX
G:=Group("C4^2:5D6");
// GroupNames label
G:=SmallGroup(192,384);
// by ID
G=gap.SmallGroup(192,384);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,254,219,58,1123,136,851,438,102,6278]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^6=d^2=1,c*a*c^-1=a*b=b*a,d*a*d=a^-1*b^2,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations
Export